How do you find the derivative of (arcsin(3x))/xarcsin(3x)x?
1 Answer
Jun 26, 2017
Explanation:
"differentiate using the "color(blue)"quotient rule"differentiate using the quotient rule
"given " f(x)=(g(x))/(h(x))" then"given f(x)=g(x)h(x) then
f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larr" quotient rule"
color(orange)"Reminder"
• d/dx(sin^-1(f(x)))=1/(sqrt(1-(f(x))^2))xxf'(x)
g(x)=sin^-1(3x)rArrg'(x)=3/(sqrt(1-9x^2))
h(x)=xrArrh'(x)=1
rArrf'(x)=(x. 3/(sqrt(1-9x^2))-sin^-1(3x) .1)/x^2
color(white)(rArrf'(x))=((3x)/(sqrt(1-9x^2))-sin^-1(3x))/x^2