How do you find the derivative of arcsin sqrt(2x)arcsin√2x?
1 Answer
Aug 10, 2017
Explanation:
•color(white)(x)d/dx(sin^-1x)=1/sqrt(1-x^2)∙xddx(sin−1x)=1√1−x2
•color(white)(x)d/dx(sin^-1(f(x)))=1/sqrt(1-(f(x))^2)xxf'(x)
rArrd/dx(sin^-1(sqrt(2x)))
=1/sqrt(1-2x)xxd/dx(sqrt2x^(1/2))
=1/sqrt(1-2x)xx1/2sqrt2x^(-1/2)
=sqrt2/(sqrt(4x(1-2x))