How do you find the derivative of arcsin(x^2)?

1 Answer
Nov 22, 2016

d/dx arcsin(x^2)= (2x)/sqrt(1 -x^4)

Explanation:

Let y = arcsin(x^2) => siny = x^2

Differentiating wrt x;

cosydy/dx = 2x

Using the identity sin^2A+cos^2A -= 1

sin^2y + cos^2y = 1
:. (x^2)^2 + cos^2y = 1
:. cos^2y = 1 -x^4
:. cosy = sqrt(1 -x^4)

And so;

sqrt(1 -x^4)dy/dx = 2x
:. dy/dx = (2x)/sqrt(1 -x^4)