How do you find the derivative of arcsin (x/2)?

1 Answer
Jun 30, 2017

d/dx(arcsin(x/2))=1/sqrt(4-x^2)

Explanation:

The derivative of arcsinu:

d/dx(arcsinu)=(u')/sqrt(1-u^2)

therefored/dx(arcsin(x/2))=((x/2)')/sqrt(1-(x/2)^2)=(1/2)/sqrt(1-x^2/4)
=1/(2sqrt((4-x^2)/4))=1/sqrt(4-x^2)