How do you find the derivative of (arcsin x)^2(arcsinx)2?

1 Answer
Nov 18, 2017

Derivative is (2arcsinx)/sqrt(1-x^2)2arcsinx1x2

Explanation:

Let us first workout derivative of arcsinxarcsinx. Let y=arcsinxy=arcsinx i.e. siny=xsiny=x and hence differentiating

cosy*(dy)/(dx)=1cosydydx=1 or (dy)/(dx)=1/cosy=1/sqrt(1-sin^2y)=1/sqrt(1-x^2)dydx=1cosy=11sin2y=11x2

Hence d/(dx)(arcsinx)^2=2arcsinx xx d/(dx)arcsinxddx(arcsinx)2=2arcsinx×ddxarcsinx

= (2arcsinx)/sqrt(1-x^2)2arcsinx1x2