How do you find the derivative of arcsinx+arccosx?

1 Answer
Nov 1, 2016

The derivative =0

Explanation:

First derivative of arcsinx
Let u=arcsinx =>x=sinu
take the derivative 1=((du)/dx)cosu
Use the identity cos^2u+sin^2u=1 =>cosu=sqrt(1-x^2)
So (du)/dx=1/(sqrt(1-x^2))
Let v=arccosx =>x=cosv
take the derivative 1=((dv)/dx)-sinv
Use the identity cos^2v+sin^2v=1 =>sinv=sqrt(1-x^2)
So (dv)/dx=-1/(sqrt(1-x^2))
Therefore (arcsinx+arccosx)'=1/(sqrt(1-x^2))-1/(sqrt(1-x^2))=0