How do you find the derivative of arctan^-1 (1/(1+x^2))?

1 Answer
May 13, 2017

The derivative is =-(2x)/(x^4+2x^2+2)

Explanation:

We need

(tanx)'=sec^2x

1+tan^2x=sec^2x

(1/x)'=-1/x^2

Let y=arctan(1/(1+x^2))

Then,

tany=1/(1+x^2)

Differentiating both sides

sec^2y*dy/dx=(-2x)/(1+x^2)^2

sec^2y=1+tan^2y=1+(1/(1+x^2))^2=((1+x^2)^2+1)/(1+x^2)^2

Therefore,

dy/dx=(-2x)/cancel(1+x^2)^2*cancel((1+x^2)^2)/((1+x^2)^2+1)

=-(2x)/(x^4+2x^2+2)