How do you find the derivative of Cos^4(2x)?

1 Answer
Feb 3, 2016

Use the chain rule twice.

Explanation:

Recall that we use the notation cos^4 (u) to mean (cos(u))^4

d/dx( (cos(2x))^4) = 4(cos(2x))^3 d/dx(cos(2x))

= 4(cos(2x))^3(-sin(2x) d/dx(2x))

= 4(cos(2x))^3(-sin(2x)(2))

= -8cos^3(2x) sin(2x)