How do you find the derivative of Cos[arcsin(x)] cos[arcsin(x)]?

1 Answer
Jun 8, 2017

d/(dx) cos(arcsin(x)) = -x/sqrt(1-x^2)ddxcos(arcsin(x))=x1x2

Explanation:

Note that:

cos^2 theta + sin^2 theta = 1cos2θ+sin2θ=1

So for any thetaθ, we have:

cos(theta) = +-sqrt(1-sin(theta))cos(θ)=±1sin(θ)

Note that for any real x in [-1, 1]x[1,1], by definition:

arcsin(x) in [-pi/2, pi/2]arcsin(x)[π2,π2]

Further note that if theta in [-pi/2, pi/2]θ[π2,π2] then:

cos theta >= 0cosθ0

Hence:

cos(arcsin(x)) = sqrt(1-x^2)cos(arcsin(x))=1x2

for any x in [-1, 1]x[1,1]

Outside this interval cos(arcsin(x))cos(arcsin(x)) takes non-real complex values.

So if we are dealing with this purely as a real valued function, then this is the only definition we need.

Then:

d/(dx) cos(arcsin(x)) = d/(dx) (1-x^2)^(1/2)ddxcos(arcsin(x))=ddx(1x2)12

color(white)(d/(dx) cos(arcsin(x))) = 1/2(1-x^2)^(-1/2)*(-2x)ddxcos(arcsin(x))=12(1x2)12(2x)

color(white)(d/(dx) cos(arcsin(x))) = -x/sqrt(1-x^2)ddxcos(arcsin(x))=x1x2