How do you find the derivative of (cos x)(cosx) using the limit definition?

1 Answer
May 7, 2016

See the explanation section below.

Explanation:

We'll need the following facts:

From trigonometry:
cos(A+B) = cosAcosB-sinAsinBcos(A+B)=cosAcosBsinAsinB

Fundamental trigonometric limits:

lim_(theta rarr0) sin theta /theta = 1

lim_(theta rarr0) (cos theta - 1) /theta = 0

And here we go:

f(x) = cosx

f'(x) = lim_(hrarr0)(cos(x+h)-cosx)/h

= lim_(hrarr0)(cosxcosh-sinxsinh-cosx)/h

= lim_(hrarr0)(cosxcosh-cosx-sinxsinh)/h

= lim_(hrarr0)((cosxcosh-cosx)/h-(sinxsinh)/h)

= lim_(hrarr0)(cosx(cosh-1)/h-sinx(sinh)/h)

= cosx(lim_(hrarr0)(cosh-1)/h)-sinx(lim_(hrarr0)(sinh)/h)

= cosx(0)-sinx(1)

= -sinx