How do you find the derivative of (cosx)^tanx?

1 Answer
Feb 19, 2017

d/dx ((cosx)^(tanx)) = (cosx)^(tanx) (( ln(cosx)-sin^2x)/cos^2x)

Explanation:

Write the function as:

(cosx)^(tanx) = (e^(ln(cosx)))^(tanx) = e^(ln(cosx)tanx)

Now differentiate using the chain rule:

d/dx (e^(ln(cosx)tanx)) = e^(ln(cosx)tanx) d/dx(ln(cosx)tanx)

d/dx (e^(ln(cosx)tanx)) = e^(ln(cosx)tanx) (tanx d/dx(ln(cosx))+ ln(cosx)d/dx(tanx))

d/dx (e^(ln(cosx)tanx)) = e^(ln(cosx)tanx) (tanx (-sinx/cosx)+ ln(cosx)/cos^2x)

d/dx (e^(ln(cosx)tanx)) = (cosx)^(tanx) ( ln(cosx)-sin^2x)/cos^2x