How do you find the derivative of cosx^tanx?

1 Answer
Jul 16, 2017

d/dx(cosx^tanx)=(sec^2xlncosx-tan^2x)cosx^tanx

Explanation:

First define y= cosx^tanx

Then, by definition, lny =tanxlncosx

And 1/y(dy/dx) = sec^2 xlncosx -(sinx/cosx)tanx

dy/dx=y(sec^2xlncosx - tan^2x)
=(sec^2xlncosx-tan^2x)cosx^tanx