How do you find the derivative of f(x)=1/(x-1) using the limit process?

1 Answer
Jan 9, 2017

f'(x) = - (1 ) /((x-1)^2

Explanation:

The definition of the derivative of y=f(x) is

f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h

So if f(x) = 1/(x-1) then;

And so the derivative of f(x) is given by:

f'(x) = lim_(h rarr 0) ( 1/((x+h)-1) - 1/(x-1) ) /h
\ \ \ \ \ \ \ \ = lim_(h rarr 0) ( (x-1)-(x+h-1) ) /( h(x-1)(x+h-1)
\ \ \ \ \ \ \ \ = lim_(h rarr 0) ( -h ) /( h(x-1)(x+h-1)
\ \ \ \ \ \ \ \ = lim_(h rarr 0) - (1 ) /((x-1)(x+h-1)
\ \ \ \ \ \ \ \ = - (1 ) /((x-1)(x+0-1)
\ \ \ \ \ \ \ \ = - (1 ) /((x-1)^2