How do you find the derivative of f(x)=1/xf(x)=1x using the limit definition?

1 Answer
Jul 9, 2016

f'(x) = -(1)/x^2

Explanation:

f'(x) = lim_(h->0) (f(x+h) - f(x))/h

= lim_(h->0) (1/(x+h) - 1/x)/h

Resolve the numerator into one fraction:

=lim_(h->0) ((x)/(x(x+h)) - (x+h)/(x(x+h)))/h = ((-h)/(x(x+h)))/h

=lim_(h->0) (-1)/(x(x+h)) = -(1)/x^2