How do you find the derivative of f(x)=2x^2+x-1f(x)=2x2+x1 using the limit process?

1 Answer
Nov 8, 2017

Based on the limit definition of derivative:

(df)/dx = lim_(h->0) (f(x+h)-f(x))/h

(df)/dx = lim_(h->0) ( (2(x+h)^2+x+h-1) - (2x^2+x-1))/h

(df)/dx = lim_(h->0) ( cancel(2x^2)+4xh+2h^2+cancel(x)+h -cancel(1) - cancel(2x^2)-cancel(x)+cancel(1))/h

(df)/dx = lim_(h->0) ( 4xh+2h^2+h )/h

(df)/dx = lim_(h->0) 2h+4x+1

(df)/dx = 4x+1