How do you find the derivative of f(x) = 2x^2-xf(x)=2x2x using the limit definition?

1 Answer
Jul 12, 2016

f'(x) = 4x-1

Explanation:

f'(x) = lim_(h->0) (f(x+h) - f(x))/h

f'(x) =lim_(h->0) (2(x+h)^2 - x - h - 2x^2 + x)/h

Expanding the bracket:

f'(x) = lim_(h->0) (color(red)(2x^2)+4xh+2h^2color(blue)(-x)-hcolor(red)(-2x^2)+color(blue)(x))/h

A few things cancel leaving:

f'(x) = lim_(h->0)(4xh+2h^2-h)/h = lim_(h->0)(4x + 2h - 1) = 4x-1