How do you find the derivative of f(x)=3((arcsinx)^2)?

1 Answer
Apr 28, 2018

f'(x)=(6arcsinx)/(sqrt(1-x^2))

Explanation:

•color(white)(x)d/dx(arcsinx)=1/(sqrt(1-x^2))

"differentiate using the "color(blue)"chain rule"

"Given "f(x)=g(h(x))" then"

f'(x)=g'(h(x))xxh'(x)

rArrf'(x)=3[2arcsinx xxd/dx(arcsinx)]

color(white)(rArrf'(x))=3(2arcsinx xx1/(sqrt(1-x^2)))

color(white)(rArrf'(x))=(6arcsinx)/(sqrt(1-x^2))