How do you find the derivative of f(x)=3(x^(−2))f(x)=3(x2) using the limit definition?

1 Answer
Feb 21, 2017

Note that

f(x)=3x^-2=3/x^2f(x)=3x2=3x2

The limit definition of the derivative states that the derivative of ff is

f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h

So, where f(x)=3/x^2, then:

f'(x)=lim_(hrarr0)(3/(x+h)^2-3/x^2)/h

Getting a common denominator:

f'(x)=lim_(hrarr0)((3x^2-3(x+h)^2)/(x^2(x+h)^2))/h

Rearranging:

f'(x)=lim_(hrarr0)(3x^2-3(x+h)^2)/(h(x^2)(x+h)^2)

Expanding the numerator:

f'(x)=lim_(hrarr0)(3x^2-3(x^2+2hx+h^2))/(h(x^2)(x+h)^2)

f'(x)=lim_(hrarr0)(3x^2-3x^2-6hx-3h^2)/(h(x^2)(x+h)^2)

f'(x)=lim_(hrarr0)(-6hx-3h^2)/(h(x^2)(x+h)^2)

We can factor and cancel an h:

f'(x)=lim_(hrarr0)(h(-6x-3h))/(h(x^2)(x+h)^2)

f'(x)=lim_(hrarr0)(-6x-3h)/(x^2(x+h)^2)

We can now evaluate the limit by plugging in 0 for h, since there's no longer the issue of h in the denominator.

f'(x)=(-6x-0)/(x^2(x+0)^2)

f'(x)=(-6x)/(x^2(x^2))

f'(x)=(-6)/x^3

f'(x)=-6x^-3