How do you find the derivative of f(x) = 3x^2 + 8x + 4 using the limit definition?

1 Answer
Jul 4, 2016

The "limit definition" technique involves using the formula f'(x) = lim_(h->0) (f(x + h) - f(x))/h

Explanation:

f'(x) = lim_(h-> 0) ((3(x + h)^2 + 8(x + h) + 4(x + h)^0) -(3x^2 + 8x + 4))/h

f'(x) = lim_(h->0)(3(x^2 + 2xh + h^2) + 8x + 8h + 4 - 3x^2 - 8x - 4)/h

f'(x) = lim_(h->0)(3x^2 + 6xh + 3h^2 + 8x + 8h + 4 - 3x^2 - 8x - 4)/h

f'(x) = lim_(h->0) (3h^2 + 6xh + 8h)/h

f'(x) = lim_(h->0) (cancel(h)(3h + 6x + 8))/cancel(h)

f'(x) = 3(0) + 6x + 8

f'(x) = 6x + 8

Checking using the power rule yields the same results.

Hopefully this helps!