How do you find the derivative of f(x)=3x+2f(x)=3x+2 using the limit process?

1 Answer
May 26, 2017

f'(x)=3

Explanation:

Recall that the derivative of any function f(x) is given by:

f'(x)=lim_(h->0) ((f(x+h)-f(x))/h)

Let f(x)=3x-2

f'(x)=lim_(h->0) ((3(x+h)-2-(3x-2))/h)

=lim_(h->0) ((3x+3h-2-3x+2)/h)

=lim_(h->0) ((3h)/h)

=lim_(h->0) (3)=3