How do you find the derivative of f(x)=4/sqrtxf(x)=4x using the limit process?

1 Answer
Oct 27, 2016

f'(x)=(-2)/(xsqrtx)

Explanation:

The derivative of the quotient is determined by using the definition of derivatives:

color(red)(f'(x)=lim_(h->0)(f(x+h)-f(x))/h)

In this exercise we will also apply this polynomial identity to expand:
color(brown)((a^2-b^2)=(a-b)(a+b))

f'(x)=lim_(h->0)(4/(sqrt(x+h))-4/sqrtx)/h

f'(x)=lim_(h->0)((4sqrtx-4sqrt(x+h))/(sqrt(x+h)sqrtx))/h

f'(x)=lim_(h->0)((4sqrtx-4sqrt(x+h)))/(h(sqrt(x+h)sqrtx)

To get rid of the square root in the numerator we will multiply by its conjugate color(blue)(4sqrtx+4sqrt(x+h))

f'(x)=lim_(h->0)((4sqrtx-4sqrt(x+h))(color(blue)(4sqrtx+4sqrt(x+h))))/(h(sqrt(x+h)sqrtx)(color(blue)(4sqrtx+4sqrt(x+h))))

f'(x)=lim_(h->0)((4sqrtx)^2-(4sqrt(x+h))^2)/(h(sqrt(x+h)sqrtx)(4sqrtx+4sqrt(x+h)))

f'(x)=lim_(h->0)(16x-16(x+h))/(h(sqrt(x+h)sqrtx)(4sqrtx+4sqrt(x+h)))

f'(x)=lim_(h->0)(cancel(16x)cancel(-16x)-16h)/(h(sqrt(x+h)sqrtx)(4sqrtx+4sqrt(x+h)))
f'(x)=lim_(h->0)(-16cancel(h))/(cancelh(sqrt(x+h)sqrtx)(4sqrtx+4sqrt(x+h)))

Now let us find the limit color(green)(lim_(h->0))

f'(x)=lim_(h->0)(-16)/((sqrt(x+h)sqrtx)(4sqrtx+4sqrt(x+h)))

f'(x)=(-16)/((sqrt(x+0)sqrtx)(4sqrtx+4sqrt(x+0)))

f'(x)=(-16)/((sqrt(x)sqrtx)(4sqrtx+4sqrt(x)))

f'(x)=(-cancel16)/(x(cancel8sqrtx))

f'(x)=(-2)/(xsqrtx)