How do you find the derivative of f(x)=5x arcsin(x)f(x)=5xarcsin(x)?
1 Answer
Aug 30, 2017
Explanation:
"differentiate using the "color(blue)"product rule"
"given "f(x)=g(x)h(x)" then"
f'(x)=g(x)h'(x)+h(x)g'(x)larr" product rule"
g(x)=5xrArrg'(x)=5
h(x)=arcsinxrArrh'(x)=1/(sqrt(1-x^2))
rArrf'(x)=(5x)/(sqrt(1-x^2))+5arcsinx