How do you find the derivative of f(x) = 7x^2 - 3 using the limit definition?

1 Answer
Jun 22, 2016

14x

Explanation:

f'(x) = lim_{h \to 0} ( (7(x+h)^2 - 3) - (7x^2 - 3))/h

= lim_{h \to 0} ( (7(x^2+2xh + h^2) - 3) - (7x^2 - 3))/h

= lim_{h \to 0} ( 7x^2+14xh + 7h^2 - 3 - 7x^2 + 3)/h

= lim_{h \to 0} ( 14xh + 7h^2 )/h

= lim_{h \to 0} 14x + 7h = 14x