We have: f(x) = arcsin(2 x + 5)f(x)=arcsin(2x+5)
This function can be differentiated using the "chain rule".
Let u = 2 x + 5 => u' = 2 and v = arcsin(u) => v' = (1) / (sqrt(1 - u^(2))):
=> (d) / (dx) (arcsin(2 x + 5)) = 2 cdot (1) / (sqrt(1 - u^(2)))
=> (d) / (dx) (arcsin(2 x + 5)) = (2) / (sqrt(1 - u^(2)))
We can now replace u with 2 x + 5:
=> (d) / (dx) (arcsin(2 x + 5)) = (2) / (sqrt(1 - (2 x + 5)^(2)))
=> (d) / (dx) (arcsin(2 x + 5)) = (2) / (sqrt(1 - (4 x^(2) + 20 x + 25))
=> (d) / (dx) (arcsin(2 x + 5)) = (2) / (sqrt(- 4 x^(2) - 20 x - 24))
=> (d) / (dx) (arcsin(2 x + 5)) = (2) / (sqrt(- (4 x^(2) + 20 x + 24)))
=> (d) / (dx) (arcsin(2 x + 5)) = (2) / (sqrt(4 x^(2) + 20 x + 24) cdot i)