How do you find the derivative of f(x) = arcsin (2x + 5)f(x)=arcsin(2x+5)?

1 Answer
Sep 15, 2016

(2) / (sqrt(4 x^(2) + 20 x + 24) cdot i)24x2+20x+24i

Explanation:

We have: f(x) = arcsin(2 x + 5)f(x)=arcsin(2x+5)

This function can be differentiated using the "chain rule".

Let u = 2 x + 5 => u' = 2 and v = arcsin(u) => v' = (1) / (sqrt(1 - u^(2))):

=> (d) / (dx) (arcsin(2 x + 5)) = 2 cdot (1) / (sqrt(1 - u^(2)))

=> (d) / (dx) (arcsin(2 x + 5)) = (2) / (sqrt(1 - u^(2)))

We can now replace u with 2 x + 5:

=> (d) / (dx) (arcsin(2 x + 5)) = (2) / (sqrt(1 - (2 x + 5)^(2)))

=> (d) / (dx) (arcsin(2 x + 5)) = (2) / (sqrt(1 - (4 x^(2) + 20 x + 25))

=> (d) / (dx) (arcsin(2 x + 5)) = (2) / (sqrt(- 4 x^(2) - 20 x - 24))

=> (d) / (dx) (arcsin(2 x + 5)) = (2) / (sqrt(- (4 x^(2) + 20 x + 24)))

=> (d) / (dx) (arcsin(2 x + 5)) = (2) / (sqrt(4 x^(2) + 20 x + 24) cdot i)