How do you find the derivative of f(x)=arcsin(3x)x?

1 Answer
Mar 14, 2018

The answer would be 319x2x(19x2)arcsin(3x)x2

Explanation:

f(x)=arcsin(3x)x

ddx(arcsin(3x)x)

=ddx(arcsin(3x))xddx(x)arcsin(3x)x2

=ddx(3x)1(3x)2arcsin(3x)x2

=3x19x2arcsin(3x)x2

=(3x)19x2(x2)(19x2)arcsin(3x)x2

=319x2x(19x2)arcsin(3x)x2