How do you find the derivative of f(x) = arctan(cos(3x))?

1 Answer
May 29, 2017

=-(3sin(3x) )/(1+cos^2(3x))

Explanation:

d/dx(tan^-1(cos(3x)))

Step 1. Use the chain rule
d/dx(tan^-1(cos(3x)))=(d(tan^-1(u)))/(du)(du)/(dx),

where u=cos(3x) and d/(du)(tan^-1(u))=1/(1+u^2)

=(d/dx(cos(3x)))/(1+cos^2(3x))

Step 2. Using the chain rule again,

d/dx(cos(3x))=(d(cos(u)))/(du)(du)/(dx),

where u=3x and d/(du)(cos(u))-sin(u), gives

=(-d/dx(3x)sin(3x) )/(1+cos^2(3x))

Step 3. Factor out constants

=-3(sin(3x) )/(1+cos^2(3x))d/dx(x)

ANSWER: =-(3sin(3x) )/(1+cos^2(3x))