How do you find the derivative of f(x) = sqrtxf(x)=√x using the formal definition?
2 Answers
I would use a "strange" rationalization of the numerator!
Explanation:
From the definition of derivative:
I would try to rationalize the numerator (although it seems strange...).
Use:
to find
Explanation:
f'(a) = lim_(h->0) ((f(a+h) - f(a))/h)
=lim_(h->0) ((sqrt(a+h) - sqrt(a))/h)
=lim_(h->0) (((sqrt(a+h) - sqrt(a))(sqrt(a+h) + sqrt(a)))/(h(sqrt(a+h)+sqrt(a))))
=lim_(h->0) (((color(red)(cancel(color(black)(a)))+h)-color(red)(cancel(color(black)(a))))/(h(sqrt(a+h)+sqrt(a))))
=lim_(h->0) (1/(sqrt(a+h)+sqrt(a)))
=1/(2sqrt(a))
That is:
f'(x) = 1/(2sqrt(x))