How do you find the derivative of F(x)=x^3−7x+5 using the limit definition?

1 Answer
Mar 27, 2017

f'(x)=3x^2-7

Explanation:

differentiating using the color(blue)"limit definition"

f'(x)=lim_(hto0)(f(x+h)-f(x))/h

The aim here is to obtain a factor h on the numerator which will cancel the h on the denominator.

f'(x)=lim_(hto0)((x+h)^3-7(x+h)+5-(x^3-7x+5))/h

lim_(hto0)(cancel(x^3)+3x^2h+3xh^2+h^3cancel(-7x)-7hcancel(+5)cancel(-x^3)cancel(+7x)cancel(-5))/h

=lim_(hto0)(cancel(h)(3x^2+3xh+h^2-7))/cancel(h)

The terms with an h on the numerator =0" as "hto0

rArrf'(x)=3x^2-7