How do you find the derivative of g(x)=3 arccos (x/2)?

1 Answer
Jul 20, 2017

g'(x)=-3/(2sqrt(1-x^2/4)

Explanation:

•color(white)(x)cos^-1x=-1/sqrt(1-x^2)

"differentiate a composite function using the "
color(blue)"chain rule"

•color(white)(x)cos^-1(f(x))=-1/sqrt(1-(f(x))^2).f'(x)

g(x)=3cos^-1(x/2)

rArrg'(x)=3xx-1/sqrt(1-(x/2)^2)xx1/2

color(white)(rArrg'(x))=-3/(2sqrt(1-x^2/4))