How do you find the derivative of ln(arcsinx)^2?

1 Answer
Jun 2, 2018

2/(arcsinxsqrt(1-x^2))

Explanation:

Given: ln(arcsinx)^2.

Use the chain rule, which states that,

dy/dx=dy/(du)*(du)/dx

Let u=arcsinx,:.(du)/dx=1/(sqrt(1-x^2)).

Then, y=lnu^2=2lnu,:.dy/(du)=2/u.

Combining, we get:

dy/dx=2/u*1/(sqrt(1-x^2))

=2/(usqrt(1-x^2))

Substitute back u=arcsinx to get the final answer:

=2/(arcsinxsqrt(1-x^2))