How do you find the derivative of ln((tan^2)x)?

1 Answer
Aug 16, 2017

2cotx+2tanx or 2secxcscx, depending on preferred simplification

Explanation:

" "

Method 1 - No simplification

y=ln(tan^2x)

Note that d/dxln(x)=1/x, so by the chain rule d/dxln(u)=1/u*(du)/dx. Then:

dy/dx=1/tan^2x*d/dxtan^2x

And we need to use the chain rule again since we have a function squared:

dy/dx=1/tan^2x * 2tanx * d/dxtanx

dy/dx=1/tan^2x * 2tanx * sec^2x

dy/dx=cos^2x/sin^2x * (2sinx)/cosx * 1/cos^2x

dy/dx=2/(sinxcosx)

dy/dx=2secxcscx

Method 2 - Simplification

Use the logarithm rules:

  • ln(a^b)=bln(a)
  • ln(a//b)=ln(a)-ln(b)

Then:

y=ln(tan^2x)

y=ln(sin^2x/cos^2x)

y=ln(sin^2x)-ln(cos^2x)

y=2ln(sinx)-2ln(cosx)

Then differentiating becomes easier:

dy/dx=2* 1/sinx * d/dxsinx-2 * 1/cosx * d/dxcosx

dy/dx=2(cosx/sinx+sinx/cosx)

dy/dx=(2(cos^2x+sin^2x))/(sinxcosx)

dy/dx=2/(sinxcosx)

dy/dx=2secxcscx