How do you find the derivative of ln((tan^2)x)?
1 Answer
Aug 16, 2017
Explanation:
Method 1 - No simplification
y=ln(tan^2x)
Note that
dy/dx=1/tan^2x*d/dxtan^2x
And we need to use the chain rule again since we have a function squared:
dy/dx=1/tan^2x * 2tanx * d/dxtanx
dy/dx=1/tan^2x * 2tanx * sec^2x
dy/dx=cos^2x/sin^2x * (2sinx)/cosx * 1/cos^2x
dy/dx=2/(sinxcosx)
dy/dx=2secxcscx
Method 2 - Simplification
Use the logarithm rules:
ln(a^b)=bln(a) ln(a//b)=ln(a)-ln(b)
Then:
y=ln(tan^2x)
y=ln(sin^2x/cos^2x)
y=ln(sin^2x)-ln(cos^2x)
y=2ln(sinx)-2ln(cosx)
Then differentiating becomes easier:
dy/dx=2* 1/sinx * d/dxsinx-2 * 1/cosx * d/dxcosx
dy/dx=2(cosx/sinx+sinx/cosx)
dy/dx=(2(cos^2x+sin^2x))/(sinxcosx)
dy/dx=2/(sinxcosx)
dy/dx=2secxcscx