How do you find the derivative of (ln(x^2-1))/x^2 ?

1 Answer
Feb 22, 2017

See below

Explanation:

f(x)=(ln(x^2-1))/x^2

For F(x)=lnf(x), F'(x)=(f'(x))/f(x)

For F(x)=(g(x))/(h(x)), F'(x)=(g(x)h'(x)-h(x)g'(x))/(h(x))^2

Thus f'(x)=((2x^2)/(x^2-1)-2xln(x^2-1))/x^4=

((2x)/(x^2-1)-2ln(x^2-1))/x^3

Cleaning this up, we get:

f'(x)=(2x-2ln(x^2-1)^(x^2-1))/(x^3(x^2-1))