How do you find the derivative of ln(x/3)?

1 Answer
Jan 26, 2017

1/x

Explanation:

method 1
use the chain rule

(dy)/(dx)=(dy)/(du)xx(du)/(dx)

y=ln(x/3)

u=x/3=>(du)/(dx)=1/3

y=lnu=>(dy)/(du)=1/u

:.(dy)/(dx)=1/uxx1/3=1/(x/3)xx1/3

:.(dy)/(dx)=3/x xx1/3=1/x

method 2

use rules of logs

y=ln(x/3)=lnx-ln3

(dy)/(dx)=d/(dx)(lnx)-d/(dx)(ln3)

=1/x-0=1/x