How do you find the derivative of lnxx13?

1 Answer
Dec 19, 2016

dydx=3lnx3x43

Explanation:

y=lnx3x=lnxx13

Applying the quotient rule:

dydx=x131xlnx13x23x23

=x2313lnxx23x23

=x23(1lnx3)x23

=1lnx3x43

=3lnx3x43