How do you find the derivative of (secx+cscx)/cscx?

2 Answers
Mar 6, 2017

d/(dx)(secx+cscx)/cscx=sec^2x

Explanation:

Let us first simplify (secx+cscx)/cscx

= (1/cosx+1/sin)/(1/sinx)

= (1/cosx+1/sin)xxsinx

= sinx/cosx+1

= tanx+1

Hence, d/(dx)(secx+cscx)/cscx

= d/(dx)(tanx+1)

= sec^2x+0

= sec^2x

Mar 6, 2017

Since, (secx+cscx)/cscx=secx/cscx+cscx/cscx=(1/cosx)/(1/sinx) +1

=sinx/cosx+1=tanx+1,

d/dx{(secx+cscx)/cscx}=d/dx(tanx+1)=sec^2x.