How do you find the derivative of sin(2x)cos(2x)sin(2x)cos(2x)?

1 Answer
Mar 2, 2016

Method 1

Use the product and chain rules.

d/dx(sin(2x)cos(2x)) = d/dx(sin(2x))cos(2x)+sin(2x)d/dx(cos(2x))ddx(sin(2x)cos(2x))=ddx(sin(2x))cos(2x)+sin(2x)ddx(cos(2x))

= [cos(2x)d/dx(2x)]cos(2x)+sin(2x)[-sin(2x)d/dx(2x)]=[cos(2x)ddx(2x)]cos(2x)+sin(2x)[sin(2x)ddx(2x)]

= 2cos^2(2x)-2sin^2(2x)=2cos2(2x)2sin2(2x)

You can use trigonometry to rewrite this.

Method 2

Use sin(2theta) = 2sintheta cos thetasin(2θ)=2sinθcosθ to write

sin(2x)cos(2x)=1/2sin(4x)sin(2x)cos(2x)=12sin(4x)

Now use the chain rule

d/dx (1/2sin(4x)) = 1/2 cos(4x)d/dx(4x)ddx(12sin(4x))=12cos(4x)ddx(4x)

= 1/2 cos(4x)*4 = 2cos(4x)=12cos(4x)4=2cos(4x)