How do you find the derivative of sin(2x)cos(2x)sin(2x)cos(2x)?
1 Answer
Mar 2, 2016
Method 1
Use the product and chain rules.
= [cos(2x)d/dx(2x)]cos(2x)+sin(2x)[-sin(2x)d/dx(2x)]=[cos(2x)ddx(2x)]cos(2x)+sin(2x)[−sin(2x)ddx(2x)]
= 2cos^2(2x)-2sin^2(2x)=2cos2(2x)−2sin2(2x)
You can use trigonometry to rewrite this.
Method 2
Use
Now use the chain rule
= 1/2 cos(4x)*4 = 2cos(4x)=12cos(4x)⋅4=2cos(4x)