Start by expanding #sin(x + y)# using the sum and difference identity.
#sin(x + y) = xy#
#sinxcosy + cosxsiny = xy#
By the product rule:
#cosxcosy + sinx xx -siny(dy/dx) -sinxsiny + cosxcosy(dy/dx) = y + x(dy/dx)#
#cosxcosy(dy/dx) - sinxsiny(dy/dx) - x(dy/dx) = sinxsiny - cosxcosy + y#
#dy/dx(cosxcosy - sinxsiny - x)= sinxsiny - cosxcosy + y#
#dy/dx = (sinxsiny - cosxcosy + y)/(cosxcosy - sinxsiny - x)#
By the formula #cosAcosB - sinAsinB = cos(A + B)#, we have:
#dy/dx = (-cos(x+ y) - y)/(cos(x + y) - x)#
#dy/dx= -(cos(x + y) - y)/(cos(x + y)- x)#