How do you find the derivative of #sqrt (1+3x) using the limit definition?

1 Answer
Jul 30, 2016

f'(x)= 3/(2sqrt(1+3x))

Explanation:

f'(x) = lim_(hrarr0) (f(x+h) - f(x))/h

=lim_(hrarr0) (sqrt(1+3(x+h)) - sqrt(1+3x))/h

Multiply numerator and denominator by sqrt(1+3(x+h)) + sqrt(1+3x)

lim_(hrarr0) (sqrt(1+3(x+h)) - sqrt(1+3x))/h(sqrt(1+3(x+h)) + sqrt(1+3x))/(sqrt(1+3(x+h)) + sqrt(1+3x))

lim_(hrarr0) (1+3(x+h) - (1+3x))/(h(sqrt(1+3(x+h)) + sqrt(1+3x)))

lim_(hrarr0) (3h)/(h(sqrt(1+3(x+h)) + sqrt(1+3x)))

lim_(hrarr0) 3/(sqrt(1+3(x+h)) + sqrt(1+3x)) = 3/(2sqrt(1+3x))