How do you find the derivative of sqrt( x+1 )x+1 using limits?

1 Answer
Mar 21, 2017

d/dx(sqrt(x+1)) =1/(2sqrt(x+1))ddx(x+1)=12x+1

Explanation:

By definition:

(df)/dx = lim_(h->0) ( f(x+h)-f(x))/h

For f(x) = sqrt(x+1) we have:

d/dx(sqrt(x+1)) = lim_(h->0)(sqrt(x+h+1)-sqrt(x+1))/h

Multiply and divide the function by (sqrt(x+h+1)+sqrt(x+1)):

d/dx(sqrt(x+1)) = lim_(h->0)((sqrt(x+h+1)-sqrt(x+1))/h)((sqrt(x+h+1)+sqrt(x+1))/(sqrt(x+h+1)+sqrt(x+1)))

and use the identity: (a+b)(a-b) = a^2-b^2

d/dx(sqrt(x+1)) = lim_(h->0)((cancelx+h+cancel1)-(cancelx+cancel1))/(h(sqrt(x+h+1)+sqrt(x+1))

d/dx(sqrt(x+1)) = lim_(h->0)cancelh/(cancelh(sqrt(x+h+1)+sqrt(x+1))

d/dx(sqrt(x+1)) = lim_(h->0)1/(sqrt(x+h+1)+sqrt(x+1)) =1/(2sqrt(x+1))