f(x) = sin^2x/cos^2x
Let f(x) = g(x)/(h(x)), so that g(x) = sin^2x and h(x) = cos^2x. Then f'(x) = (g'(x) xx h(x) - g(x) xx h'(x))/(h(x))^2.
Let's differentiate g(x) and h(x).
g(x) = (sinx)(sinx)
g'(x) = cosxsinx + cosxsinx
g'(x) = 2cosxsinx
g'(x) = sin2x
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
h'(x) = (cosx)(cosx)
h'(x) = -sinxcosx - sinxcosx
h'(x) = -2sinxcosx
h'(x) = -(2sinxcosx)
h'(x) = -sin2x
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
f'(x) = (g'(x) xx h(x) - g(x) xx h'(x))/(h(x))^2.
f'(x) = ((sin2x xx cos^2x) - (-sin2x xx sin^2x))/(cos^2x)^2
f'(x) = ((2sinxcosx xx cos^2x) - (-2sinxcosx xx sin^2x))/(cos^2x)^2
f'(x) = ((2sinxcos^3x) - (-2sin^3xcosx))/(cos^4x)
f'(x) = (2sinxcos^3x + 2sin^3xcosx)/(cos^4x)
f'(x) = (2sinxcosx(cos^2x + sin^2x))/cos^4x
f'(x) = (2sinx)/cos^3x
f'(x) = 2cotxsec^2x
Hopefully this helps!