How do you find the derivative of tan(arcsin(x))?

1 Answer
Aug 28, 2016

ddxtan(arcsin(x))=1(1x2)32

Explanation:

Let t=arcsin(x)

Then:

x=sin(t)

So:

tan(arcsin(x))=tan(t)=sin(t)cos(t)=x1x2

So:

ddxtan(arcsin(x))

=ddx(x(1x2)12)

=(1x2)12+x(12)(1x2)32(2x)

=(1x2)(1x2)32+x2(1x2)32

=1(1x2)32