How do you find the derivative of tan(arcsin(x))?
1 Answer
Aug 28, 2016
Explanation:
Let
Then:
x=sin(t)
So:
tan(arcsin(x))=tan(t)=sin(t)cos(t)=x√1−x2
So:
ddxtan(arcsin(x))
=ddx(x(1−x2)−12)
=(1−x2)−12+x⋅(−12)(1−x2)−32⋅(−2x)
=(1−x2)(1−x2)−32+x2(1−x2)−32
=1(1−x2)32