How do you find the derivative of #tanx/(1+sinx)#?
1 Answer
Jul 3, 2017
Explanation:
#"differentiate using the "color(blue)"quotient rule"#
#"given " f(x)=(g(x))/(h(x))" then"#
#f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larr" quotient rule"#
#g(x)=tanxrArrg'(x)=sec^2x#
#h(x)=1+sinxrarrh'(x)=cosx#
#rArrf'(x)=((1+sinx).sec^2x-tanxcosx)/(1+sinx)^2#
#color(white)(rArrf'(x))=((1+sinx)sec^2x-sinx)/(1+sinx)^2#