How do you find the derivative of the function: y=arccos(1/x)?

1 Answer
Nov 8, 2016

dy/dx = 1/(sqrt(1 - 1/x^2)x^2)

Explanation:

We can write y=arccos(1/x) <=>cosy=1/x
:. cosy=x^-1

We can then differentiate implicitly:

-siny(dy/dx) = -x^-2
siny(dy/dx) = 1/x^2

Using the identity sin^2A + cos^2A -= 1 we have

sin^2y + (1/x)^2 = 1
:. sin^2y = 1 - 1/x^2
siny = sqrt(1 - 1/x^2)

And substituting this we have:

sqrt(1 - 1/x^2)(dy/dx) = 1/x^2
:. dy/dx = 1/(sqrt(1 - 1/x^2)x^2)