How do you find the derivative of the function: y=arccos(1/x)?
1 Answer
Nov 8, 2016
dy/dx = 1/(sqrt(1 - 1/x^2)x^2)
Explanation:
We can write
We can then differentiate implicitly:
-siny(dy/dx) = -x^-2
siny(dy/dx) = 1/x^2
Using the identity
sin^2y + (1/x)^2 = 1
:. sin^2y = 1 - 1/x^2
siny = sqrt(1 - 1/x^2)
And substituting this we have:
sqrt(1 - 1/x^2)(dy/dx) = 1/x^2
:. dy/dx = 1/(sqrt(1 - 1/x^2)x^2)