How do you find the derivative of the function: y=arccos(arcsinx)?

1 Answer
Mar 2, 2016

ddxarccos(arcsin(x))=11x21arcsin2(x)

Explanation:

Noting that
ddxarccos(x)=11x2
and
ddxarcsin(x)=11x2
(derivations are included at the bottom)

Applying the chain rule gives us

ddxarccos(arcsin(x))=11arcsin2(x)(ddxarcsin(x))

=11x21arcsin2(x)

=11x21arcsin2(x)


.
.
.


To derive the derivatives used above, we can use implicit differentiation.

Let y=arccos(x)

cos(y)=x

sin(y)dydx=1

dydx=1sin(y)

=1sin(arccos(x))

=11x2

(Try drawing a right triangle where cos(θ)=x and calculate sin(θ) for the final step)


Let y=arcsin(x)

sin(y)=x

cos(y)dydx=1

dydx=1cos(y)

=1cos(arcsin(x))

=11x2