How do you find the derivative of x^2*tan^-1 xx2⋅tan−1x?
1 Answer
May 9, 2016
Explanation:
Differentiate using the
color(blue)" product rule " product rule • If f(x) = g(x).h(x) then f'(x) = g(x).h'(x) + h(x).g'(x)
"---------------------------------------------------------"---------------------------------------------------------
hereg(x)=x^2rArrg'(x)=2x and
h(x)=tan^-1xrArrh'(x)=1/(1+x^2)
"---------------------------------------------------------"
Substitute these values into f'(x)
rArrf'(x)=x^2 1/(1+x^2)+tan^-1x.2x
=x^2/(1+x^2)+2xtan^-1x