How do you find the derivative of x^2*tan^-1 xx2tan1x?

1 Answer
May 9, 2016

(x^2)/(1+x^2)+2xtan^-1xx21+x2+2xtan1x

Explanation:

Differentiate using the color(blue)" product rule " product rule

• If f(x) = g(x).h(x) then f'(x) = g(x).h'(x) + h(x).g'(x)
"---------------------------------------------------------"---------------------------------------------------------
here g(x)=x^2rArrg'(x)=2x

and h(x)=tan^-1xrArrh'(x)=1/(1+x^2)
"---------------------------------------------------------"
Substitute these values into f'(x)

rArrf'(x)=x^2 1/(1+x^2)+tan^-1x.2x

=x^2/(1+x^2)+2xtan^-1x