How do you find the derivative of x^3*arctan(7x)?

1 Answer
Apr 23, 2015

Firstly let's differentiate this function using implicit and logarithmic differentiation:

q=ln(arctan(7x))

e^q=arctan(7x)

tan(e^q)=7x

e^qsec^2(e^q)*(dq)/(dx)=7

arctan(7x)*(tan^2(e^q)+1)(dq)/(dx)=7

arctan(7x)*(49x^2+1)(dq)/(dx)=7

(dq)/(dx)=7/(arctan(7x)*(49x^2+1)

Alright, knowing this we can now differentiate x^3*arctan(7x) using implicit differentiation and the result above...

y=x^3*arctan(7x)

lny=ln(x^3*arctan(7x))

lny=ln(x^3)+ln(arctan(7x))

lny=3lnx+ln(arctan(7x))

1/y*(dy)/(dx)=3/x+7/(arctan(7x)*(49x^2+1)

(dy)/(dx)=y{3/x+(7)/(arctan(7x)*(49x^2+1)}}

(dy)/(dx)=x^3*arctan(7x){3/x+7/(arctan(7x)*(49x^2+1)}}

(dy)/(dx)=(3x^3*arctan(7x))/x+(7x^3*arctan(7x))/(arctan(7x)*(49x^2+1))

(dy)/(dx)=3x^2*arctan(7x)+(7x^3)/(49x^2+1)

I can also give you an alternative way of finding this derivative, using the product rule...

y=x^3*arctan(7x)=u*v

u=x^3, therefore (du)/(dx)=3x^2

v=arctan(7x)

tanv=7x

sec^2v*(dv)/(dx)=7

(tan^2v+1)*(dv)/(dx)=7

(49x^2+1)*(dv)/(dx)=7

(dv)/(dx)=7/(49x^2+1)

This means that:

(dy)/(dx)=x^3*7/(49x^2+1)+arctan(7x)*3x^2

(dy)/(dx)=(7x^3)/(49x^2+1)+3x^2*arctan(7x)