How do you find the derivative of #x^(5/3) * ln(3x)#?
1 Answer
May 16, 2016
Explanation:
differentiate using the
#color(blue)"product rule"# If f(x) = g(x).h(x) then f'(x) = g(x)h'(x) + h(x)g'(x)...(A)
#"-----------------------------------------------------"#
#g(x)=x^(5/3)rArrg'(x)=5/3x^(2/3)-"using the"color(blue)" power rule"#
#h(x)=ln(3x)rArrh'(x)=1/(3x)xx3=1/x# using
#d/dx(ln(f(x)))=1/(f(x))xxd/dxf(x)#
#"---------------------------------------------------------"#
Substitute these values into (A)
#f'(x)=x^(5/3)xx1/x+ln(3x)xx5/3x^(2/3)#
#=x^(5/3-1)+5/3x^(2/3)ln(3x)=x^(2/3)+5/3x^(2/3)ln(3x)# Taking out a common factor of
#x^(2/3)#
#rArrd/dx(x^(5/3).ln(3x))=x^(2/3)(1+5/3ln(3x))#