How do you find the derivative of (x+cosx)/tanx?

1 Answer
Apr 30, 2017

(df)/(dx)=(tanx-tanxsinx-xsec^2x-secx)/tan^2x

Explanation:

We can use Quotient rule, which states if f(x)=(g(x))/(h(x))

then (df)/(dx)=((dg)/(dx)xxh(x)-(dh)/(dx)xxg(x))/(h(x))^2

hence as f(x)=(x+cosx)/tanx

(df)/(dx)=(tanx xx (1-sinx)-sec^2x(x+cosx))/tan^2x

= (tanx-tanxsinx-xsec^2x-secx)/tan^2x