How do you find the derivative of x^ln x?

2 Answers
Jul 4, 2018

f'(x)=2x^(ln(x))*(ln(x)/x)

Explanation:

Taking the logarithm on both sides we get

ln(f(x))=ln(x)*ln(x)
differentiating with respect to x:
1/f(x)*f'(x)=ln(x)/x+ln(x)/x)
so we get

f'(x)=2x^(ln(x))*(ln(x)/x)

\frac{d}{dx}(x^{\ln x})=x^{\lnx}(\frac{1}{x^2}+\ln x)

Explanation:

For a positive real number x, applying chain rule of differentiation as follows

\frac{d}{dx}(x^{\ln x})

=x^{\lnx-1}\frac{d}{dx}(\ln x)+x^{\lnx}\ln x\frac{d}{dx}(x)

=x^{\lnx-1}(\frac{1}{x})+x^{\lnx}\ln x

=x^{\lnx}\frac{1}{x^2}+x^{\lnx}\ln x

=x^{\lnx}(\frac{1}{x^2}+\ln x)