How do you find the derivative of xlny−ylnx=1?
1 Answer
Jun 27, 2017
Explanation:
using implicit differentiation
differentiate xlny and ylnx using the
product rule
(x.1y.dydx+lny)−(y.1x+lnx.dydx)=0
⇒xydydx+lny−yx−lnxdydx=0
⇒dydx(xy−lnx)=yx−lny
⇒dydx=yx−lnyxy−lnx